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Position and Quantum Theory 
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It is customarily maintained that the concept of unmeasured (i.e., unobserved) 
position is without meaning in quantum theory. However, the vast literature on 
the subject, as shown here through the typical example of the double-slit experi- 
ment, really does not provide an iron-clad proof that this is indeed so. The 
question of the possible meaning of unobserved position is thus open. The 
problem is then resolved by showing quite rigorously that, after all, unobserved 
position is meaningless in quantum theory. The criterion for unobserved position 
to be meaningful in any theory (probabilistic or not) is taken to be that the 
probability density for position must satisfy the Einstein-Chapman-Kolmogorov 
equation with a positive-semidefinite kernel which is also properly normalized. 

1. I N T R O D U C T I O N  

One of  the most  unusual  and conceptual ly difficult statements (accepted 
by many)  emerging f rom the background  experiments o f  quan tum theory 
as well as the formalism of  quan tum mechanics  itself is that  the not ion of  
posit ion o f  an object only has meaning at the momen t  o f  measurement ;  
i.e., unmeasured  (that is, unobserved)  posit ion is a meaningless concept.  
For  example,  we are told that  the pattern o f  particles arriving at a screen 
after coming undis turbed through a double-slit  ar rangement  is incompatible  
with those particles having meaningful  posit ions between source and  screen. 
The argument  here is so basic that it has even been carried out wi thou t  the 
formalism of  quan tum mechanics.  Of  course, it can also be completed with 
the quan tum formalism as well. 

Such astonishing statements must certainly be investigated in the 
greatest detail before being accepted and, o f  course, these statements have 
been the subject of  a great deal of  discussion in the literature since the 
earliest days o f  quan tum theory. However,  as many  know who have read 
this material,  the argumenta t ion found  there is often not  very compelling. 
This is, in part, because frequently no careful distinction is made between 
the consequences  o f  experiments and the consequences  o f  the quan tum 
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mechanical formalism. It is also due to the fact that the consequences drawn 
from the formalism itself are sometimes not sharp and are subject to diverse 
interpretations. So, for many, the problem remains--does unobserved posi- 
tion have meaning? 

In this work we shall ultimately not be concerned with consequences 
from experiment itself, but shall finally focus entirely on the consequences 
of  the quantum formalism. 

In the following discussion I shall first briefly try to convince the reader 
that there really is an unsolved problem here by choosing a well-worn 
example from traditional considerations for analysis; I shall consider the 
quantum mechanical analysis of the double-slit experiment. The goal of 
this development will certainly not be a full coverage of the pros and cons 
of  the position-meaning problem, but merely to present sufficient consider- 
ations that the reader may question some of  the traditional arguments. 

Finally, in the second part of the paper a rigorous, rather novel approach 
to the problem will be used to demonstrate that, after all, the formalism of 
quantum mechanics decidedly does imply that unobserved position is mean- 
ingless. This will be shown by proving that essentially any probability density 
P = Oq'*, where 0 is governed by the Schr6dinger equation, cannot satisfy 
the Einste in-Chapman-Kolmogorov (ECK) equation with an everywhere 
nonnegative transition probability which is also properly normalized. These 
latter requirements, as will be discussed, are taken as the criterion for 
unobserved position to be meaningful in any theory. 

2. DOUBLE-SLIT EXPERIMENT 

Here, I reconsider the well-known double-slit experiment, with the 
attendant quantum formalism. Consider then a beam of independent parti- 
cles incident on the customary double-slit arrangement, the particles finally 
forming the characteristic pattern on the screen. Assume that, between the 
particle source and the screen, the particles are not disturbed in any way. 
The quantum formalism may then be used to construct an argument which 
apparently proves that the shape of the observed particle pattern on the 
screen contradicts the hypothesis that the unobserved particles, between 
source and screen, may be considered as having definite though unknown 
positions at each moment. This traditional argument goes as follows. 2 
Assuming for simplicity that the slits are sufficiently narrow, we can write 
for the wave function at the screen, via the Feynman path-integral approach, 

~/(X, t ) :  Klffy(Xl, q ) +  K2~b(x2, q) (2.1) 

where x denotes any location on the screen; xl and x2 denote the slit 

2This traditional argument may be found, for example, in Bohm (1951); see also D'Espagnat 
(1976) and Feynman and Hibbs (1965). 



Position and Quantum Theory 51 

locations; KI and K 2 a r e  Feynman propagators between the slits and screen, 
and are defined as transition amplitudes from slit to screen for observed 
particles; and 0(x~, tl) and 0(x2, fi) denoting the incoming wave function 
at the individual slits 1 and 2, respectively, at time t~ < t. We then get the 
following observationally correct expression for probability densities at the 
screen: 

p(x, t)---Igll2p(x~, q ) +  IK212p(x2, t l )+2 Re{gaK2*O(xl, tl)~/*(x2, t0} 

where Re signifies the real part. Note that, if just slit 1 or just slit 2 were 
open, then we would have just the first or just the second term present on 
the right-hand side here, respectively. 

The argument is then made that (Bohm, 1951, p. 122), " i f  the experiment 
involved a probability distribution of classical particles" we would have, 
instead, 

p(x, t )=  Igal2p(x, q)+[g212p(x2, tl) (2.3) 

holding as the pattern on the screen. The argument is concluded by noting 
that equation (2.3) differs from the correct relation (2.2) through lack of 
"interference terms." Thus, the conclusion is forced that unobserved posi- 
tion must be meaningless. 

Now, looking at this argument more closely, we see that it is weak in 
assuming that equation (2.3) correctly describes the particle pattern to be 
expected on the screen in case unobserved position is meaningful. This is 
so since equation (2.3) can only be expected to be true if the (unobserved) 
particles each go through one slit or the other. But it is quite conceivable 
that the particles may have unobserved though definite position at each 
moment and not go through one slit or the other. This could happen, for 
instance, if the unobserved position were not a continuous function of time. 
We know that very precise successive position measurements on objects 
certainly do not support any observed behavior that is truly continuous in 
time. Therefore, even in our conceptualizing about unobserved (though 
definite) particle position we have no justification in assuming it to be 
continuous in time. Thus, from this new viewpoint, we might expect each 
particle to interact, in some sense, with both slits. Or, expressed differently, 
the slits would not behave independently in their effect on each particle. 
We would then expect a relation of the form of equation (2.3) to hold, but 
with the Ig ,  I = replaced by other quantities which would each reflect the 
synergism of the two slits. These new quantities would then represent the 
transition probabilities from slit to screen of the unobserved particles. 3 

3In connection with equation (2.3), also note that we have no right to assume that the IK~I z 
(which are defined in terms of certain observations) in a situation where observations are 
actually not made (i.e., at the slits here) are equivalent to transition probabilities that describe 
particles with unobserved but meaningful  positions. 
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Therefore, equation (2.3) may not correctly describe particles with 
unobserved though definite positions. And if this equation is suspect, then, 
of course, so is the conclusion of the traditional argument. 

Although the above argument was only fabricated to point out a possible 
weakness in the traditional analysis, it is hoped that the reader at this point 
will be convinced that the position-meaning has certainly not been resolved 
by the customary quantum arguments. 

Finally, as a preparatory comment, I note t h a t p ( x ,  t) as given in 
equation (2.2) can be expressed differently, in a form, related to the above 
fabrication, which will be basic for later considerations. That is, we can 
rewrite equation (2.2) as 

1 * 

{2 i 
p(x,t)=~ f-r~(K,K* ~---!+K*K,~]} +,lls * (2.4) 

where the summation is over the two slits, and where ?si -~ ?s(xi, tl). 
In this form, p(x, t) might be considered as a sum, over mutually 

exclusive alternatives, of unobserved transitions (where the real quantity in 
parentheses plays the role of a "transition probability") from the two slits, 
and where ff~ff* is assumed, of course, to also be equal to the probability 
density of unobserved particles. Here, the "transition probabilities" which 
display the interdependence of the slits, if all nonnegative, could be inter- 
preted as merely reflecting the contributions that particles (with definite 
though unobserved positions) near one slit ultimately make to the pattern 
on the screen. In this case the "transition probabilities" would be the 
quantities that correctly replace the ]Kil 2 in equation (2.3), And, if the 
"transition probabilities" are ever negative, this would betray the fact that 
unobserved position is meaningless. 

The rest of this work will, in fact, be devoted--in a more general 
setting--to the question of whether or not p can be represented as in 
equation (2.4) with "transition probabilties" that are always nonnegative 
and properly normalized. I shall show that, for essentially any p = ~ * ,  
where ~ is governed by the Schrfdinger equation, this is not possible. 

3. CRITERION OF MEANING 

In this section I formulate the criterion for unobserved position to be 
meaningful in any theory. For simplicity, I make the considerations one- 
dimensional. 

If unobserved position is to be meaningful, then one should be able 
to speak of the probability density that unobserved particles should have 
some position or other. I assume that position measurements (i.e., observa- 
tions) do not locally perturb the unobserved positions of such particles 
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(their subsequent  behavior  may certainly be affected, however)  so that  one 
can identify the probabil i ty density for unobserved particles with that  for 
observed particles at any location. Thus, when I apply these considerat ions 
to quan tum mechanics  later, I shall consider p = ~b~b* to refer to the probabil-  
ity density o f  both observed or unobserved particles. (I am using the term 
"observed"  in the above several lines to refer to results that  would  occur  
/f one decided to make an observation;  this, however,  does not  mean that  
such observations are actually made. In  fact, when one speaks of  the time 
evolution o f  p in quan tum theory, it is unders tood  that prior  to any time 
of  interest, such observations,  after the initial preparat ion o f  the state, are 
not actually made.)  

Nov,, if unobserved posit ion is meaningful,  then it must  be that the 
probabil i ty density at any location at some time can be considered as 
composed  of  contributions coming from all possible locations at any given 
earlier time. That is, I take as the criterion for unobserved posit ion to have 
meaning in any theory that the probabili ty density satisfies the Einstein-  
C h a p m a n - K o l m o g o r o v  (ECK)  equation, which is expressed in one 
dimension as 

p(x, t) = f Q(xt; ztl)p(z, tl) dz (3.1) 

where tl -< t, and Q is the transit ion probabil i ty that unobserved particles 
go f rom z to x in the time interval t - ft. Further, in order  to be a true (i.e., 
physical) transit ion probabili ty,  Q must also satisfy the condit ions 

(i) Q(xt; zq) >-0 for all x, z, t-> tl (3.2) 

(ii) J Q(xt; zfi) dx = 1 for all z, t>_ tl (3.3) 

and one says that the latter condit ion describes a properly normalized kernel. 4 
In the following sections, I shall show that essentially any p = q~@*, 

where ~0 is governed by the Schr6dinger equation,  cannot  satisfy the E C K  

4Feynman (1987) recently considered the interesting formal possibility that probabilities, in 
certain cases, may be negative. He does not ascribe any particular physical significance to 
such probabilities and assumes that they are only permissible "in the sense that the assumed 
conditions of preparation or verification are experimentally unattainable." That is, situations 
described by negative probabilities cannot be prepared or else cannot be verified experi- 
mentally, but they may be useful in describing imagined intermediary states. The transition 
probability Q [see equation (3.1)] that we consider in this paper would qualify as such a 
probability. However, aside from this there is no significant overlap between Feynman's 
considerations and the present ones, since Feynman is concerned only with the possible 
existence of negative probabilities and I am concerned with formulating a criterion of meaning 
for unobserved position, which, incidentally, involves quantities (like Q) which may be 
interpreted as one of Feynman's negative probabilities. 
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equation with Q satisfying the above two conditions. In this way, then, I 
demonstrate that unobserved position is meaningless in quantum theory. 

4. POSITION AND QUANTUM THEORY 

In this section I shall apply the criterion for meaningfulness of  position 
to quantum theory, where I remind the reader that I am making one- 
dimensional considerations. The problem, then, is this: given the quantum 
probability density p(x, t), for all x and t, where p = ~0"  with ~ being 
governed by the Schr6dinger equation, does there then exist a Q such that 

p(x, t) = J- Q(xt; zt,)p(z, tl) dz (4.1) 

for all x, t-> ta, where Q->0 always, and where also Q is properly nor- 
malized? 

To solve this problem one must first make general considerations 
concerning the construction of  the kernel Q so that it satisfies the ECK 
equation. There are two general methods for constructing such kernels. 
With the first method I shall use what I shall refer to as identity transforma- 
tions, and with the second method, I shall consider what I shall call 
substantive transformations. 

4.1. First Method 

Using consequences of the Schr6dinger equation, one can easily con- 
struct a candidate for Q as follows: From the path-integral formulation of  
quantum mechanics we have, for any ~, 

O(x, t) = I K(xt; ztl)qt(z, q) dz (4.2) 

for all x, t -> tl, where K here is the appropriate propagator. This gives for 
the probability density 

p(x, t) = K(xt; zq)K*(xt; yt,) qJ*(z, tl) dy p(z, q) dz (4.3) 

where we see that the expression in parentheses on the right-hand side plays 
the role of a (complex) "transition probability." We can, however, rewrite 
this so that the kernel is real, and we have 

. ) ,qJ (Y , P(X,t)=I~{f[K(xt;z t l )g*(xt;yt , )  ~----~z)-r 

=- I Pp dz 

c.c.] ay}p(z, t,)dz 

(4.4) 
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for all x, t >- tl, where I have suppressed the t I dependence in ~O for simplicity, 
and where I have denoted the above kernel by the specific letter P because 
of its importance for later discussion. I also note here that the transformation 
from the right-hand side of equation (4.3) to the right-hand side of equation 
(4.4) holds for any functions K and q~. 

Thus, quantum theory gives us a candidate for the ECK equation. 
(Whether or not P also satisfies the requisite additional two conditions is 
another matter, which I shall consider in detail later.) 

A question that must be immediately addressed is, is the above real 
kernel unique? That is, for a given K, are there other ways of arranging or 
rewriting or introducing terms so that we might have, for the same p(z, tl) 
and p(x, t), 

p(x, t) = I Q(xt; ztl)p(z, tl) dz (4.5) 

for all x, t >- t~, where Q is some other real combination of the K's  and ~p's. 
An example of this kind of occurrence was in the transition from the 
(complex) kernel in equation (4.3) to the (real) kernel in equation (4.4). 
For the kind of changes we are considering here, the kernels may be said 
to be related by an "identity transformation." That is, ~ Pp dz and ~ Qp dz 
are the same for any functions K and q~, even though P ~ Q. Of course, 
only for certain K (determined by the Schr6dinger equation) is ~ Pp dz = 
o(x ,  t) = I Op 

Now, suppose that besides P there is another kernel Q satisfying the 
ECK equation, where both kernels are constructed from the same K and 
qJ, i.e., they are related by an identity transformation. Then we must have 

f ( P -  O)P dz = 0 (4.6) 

as an identity, i.e., for any functions K and qJ. But, as I shall show, this 
implies that Q must be of the same degree in the K's,  K*"s,  ~0's, and ~0*'s 
as is P. For ekample, suppose that 

Q= f {K(x,  t; ztl)K*(xt; ytl)K(xt; Atl) ~b*(Y) ~b(A)+c.c.} dydA (4.7) 

and put this expression, together with the expression for P, into equation 
(4.6). The resulting relation must hold for all K and ~. Now, I shall take 
particular functional derivatives of this relation about the arbitrary K, but 
do not vary the ~,'s. If one writes K = A e iB, then one takes 6K = eiB6A = 
K6A/A and ~K* = K*6A/A. I then apply 6/6K(xt; ~tl) to both sides of 
the above relation. The details are too long to present here, so I comment 
on them in general terms. I then next apply 6/6K(xt; ~'tl) to the resulting 
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equation that one has after the first functional derivation. At this point one 
has a sum of  terms, some consisting of products of the K, K*, ~O, and ~b*, 
each evaluated at s c or ~:', and a sum of  terms each consisting of  a single 
integral. When one finally applies 8 /SK(x t ;  ~:"tl) to this relation only the 
terms consisting of integrals (which all come from Q) contribute. We then 
end up with a long sum of similar terms, each being a product of three K's  
(including one or two K*'s)  and three &s (including one or two ~/,*'s). 
Now choose ~:'= ~:"---s ~ to be arbitrary, and also choose tp to be real (this 
is alright, as K is independent of ~0). Further choosing tp(~:) to never vanish, 
we can then divide out by the products of  the ~O's, and obtain, 

K ( xt; ~tl) K ( xt; s K*(  xt; ~tl) + K*(xt;  ~q) K*(xt;  ~tl) K ( xt; ~tl)= 0 (4.8) 

Consequently, we must have 

K(x t ;  (h)  + K*(xt;  (ta) = 0 (4.9) 

for all ~:. And this relation implies that the real part of  K must vanish for 
all ~. 

Now, let us reconsider the whole development above, but with a 
different variation. This time take 8K = iSBK and 8K* = - i S B .  K*. These 
variations have the same general form as the ones used before, except for 
the important difference that 8K* involves a different sign than 8K. If  one 
then repeats the previous procedure with this variation, one gets the same 
terms except that they have different coefficients than before. Whereas before 
all terms occurred multiplied by -1 ,  now they all occur with plus signs and 
in addition some are multiplied by i. We now get the relation 

iK(xt;  sCtl) + K*(xt;  ~tl) = 0 (4.10) 

for all ~:. And this relation, together with the already established result that 
Re(K)  = 0, implies that K = 0 for all s r Thus, equation (4.6) is trivial, and 
such a Q does not exist. Only if P and Q depend on the K ' s  to the same 
degree (i.e., the K 's  and K*'s  to the same powers) will this not happen. In 
that case we would obtain, instead, relations between the coefficients of  the 
various products of the K ' s  involved in P and Q. Finally, everything just 
concluded about the K ' s  here also holds, by exactly the same reasoning 
for the O's. Therefore, the assertion is proven. 

We now see that if there is another (real) kernel Q which is related by 
an identity transformation to P, then Q must be of the same degree in K, 
K* and ~b, ~O* as P is. So, Q must have the same structure as P, except 
possibly with different coefficients. But it is easy to see then that no other 
such properly normalized kernel exists besides P itself. 
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4.2. Second Method 

In this section I consider the other way that one might construct different 
kernels; this is by actually modifying K so that ~b(x, t) remains the same. 

For example, suppose we have 

t~(x, t) = f K(xt; Ztl)l]/(z , tl) dz (4.11) 

for some given K, for all x, t -  t 1. We can easily construct another kernel 
/~ here which satisfies the same equation for all x, t>_ ta, by defining 

=-K(xt; Ztl)+ G(xt; Ztl), where G satisfies the relation 

f G(xt; Zt l ) I J I (Z  , tl) dz = 0 (4.12) 

for all x, t -> tl. Then, we obviously have 

O(x, t) = I l~(xt; ztl)tp(z, tl) dz (4.13) 

for all x, t -> tl. 
Now let us see what further consequences follow for p(x, t) from this 

approach. From equation (4.13) we have 

p(x,t)=-~ K(xt;ztl)K*(xt;ytl) ~-~--~z) • p(z, tl) dz (4.14) 

Now substituting the relation /~ = K + G here and using equation (4.12) 
yields the relation 

p(x, t)= f [P(xt; zt,)+ A(xt; Ztl)lP(z) dz~- f Q(')(xt; zt,)p(z) dz 
J 3 

where 

f~  ~*(y) 
ytl) ~ dyj (4.16) 

for a G satisfying equation (4.12), and the superscript s on Q above 
distinguishes this "substantive" construction from that considered in the 
previous section. * 
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5. Q IS NOT PHYSICAL 

In the preceding sections I have discussed the two ways that one can 
generate kernels in quantum theory so that the kernel satisfies the ECK 
equation (3.1). In this section I shall show that, in fact, neither way can 
produce a kernel which also satisfies the requisite conditions (3.2) and (3.3) 
which would make the kernel a physical transition probability. Thus, I shall 
conclude that position is meaningless in quantum theory. 

I first address the construction of the kernel Q(~). Throughout  the rest 
of the discussion I restrict consideration to the case where there is no 
external field; V(x)=--O. This case will be sufficient for present purposes, 
since the result is in the negative. 

Then, paraphrasing conditions (3.2) and (3.3), to make Q(,I physical, 
we must find a G such that these conditions hold: 

(i) Po+h->0  fo ra l l  x,z,t>-t~ (4.17) 

(ii) f A(xt; Ztl) dx = 0 for all z, t-> tl (4.18) 

since, as is easily shown, 5 S Po(xt; zt~) dx = 1, where the zero subscript is to 
remind us of zero external field, and, 

(iii) f G(xt; ztl)~b(z, tl) dz=O (4J9)  

where A is defined in terms of G according to equation (4.16). 
I also assume that go---K0+ G, and therefore G is continuous in x 

and z as is Ko itself. This is a very reasonable assumption, as there should 
be no reason for discontinuities in empty space. 

From equation (4.16) and condition (i) above, we have 

R e { /  K*o(xt;yt~)r(y)e-~/~)~(Y)dy} 

• Re{G(xt; ztl) + Ko(xti ztl} 

- > I m { f  KX (xt;yt~)r(y)e -(i/~)*(y) dy) 

• Im{G(xt; Ztl) + Ko(xt; ztl)} (4.20) 

5Using the expression for the free kernel K o [as given in equation (4.21] in Po, we obtain 

,rrRe~f~b(Y) ei~(y:Z-z2)[Ie2i~x(z-y)dx] dy } dx 

=Re[  e i'~(y2-zb) ,5(z-y) dy~ = 1 
[J4,(z) J 
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where r(y)=------r(y, h) and ~o(y)-= ~(y,/1),  Im denotes the imaginary part, 
and ~(y)  = r(y) e -(i/~)'p(y). 

Taking the expression for the free kernel K0 as (Feynman and Hibbs, 
1965, p. 42) 

Ko(xt; zt)= (~i)  l/2 ei~(~-=)2 (4.21) 

where a = m/2hAt, with At = t - tl, we obtain for condition (i) the relation 

(i') Re G -co cos a(x -y )  - - ~ + ~ ( y )  r(y) dy 

+ I m O f _ + ~ s i n { a ( x - y ) ' 2  7r 1 -~-+~q~(y)} r (y )dy  

>--(~)l /2f_+~cos{a(x-y)2-a(x-z)2+lq~(y)}r(y)dy 

(4.22) 

Similarly, condition (ii) becomes 

(ii') dx Re G c~(x-y)  2 -  + ~(y r(y) dy 
-co 

+imGI_~~176 .2 ~r 1 ( y ) } r ( y ) d y ] = 0  - y) --~+~ (4.23) 

I now slightly restrict ~O by requiring that 0(z, 81) is a wavepacket, i.e., 
that r(z, t l ) = 0  for Iz l>B for some B. Also note that r(z, tl) must be 
continuous at z since derivatives of r exist (since 0 satisfies the Schr6dinger 
equation). 

I now demonstrate that conditions (i)' and (ii)' are incompatible, as 
follows. Begin by integrating condition (i)' over some finite region in x, i.e., 

+ A  
apply J-A, for some A, throughout equation (4.22). The resulting double 

+ A  + B  integrals can then be written a s  I--A dx S-~ dy, since r(y, tl) is a wave packet. 
But, by previous discussion, the integrands involved here are continuous, 
which is all that is needed to interchange the order of the above finite 
integrals (integrals involving infinite limits would require uniform conver- 
gence before this would be permitted), so that we have, instead, ~+~ dy ~+_a dx 
throughout. But this can also be expressed as ~+~ +A dy ~-A dx, again because 
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r(y, tl) is a wave packet. Thus, condition (i)' becomes 

f+aAdX[ReGf_+~cos{a(x-y)'2 7r l - ~ + ~ q ~ } r ( y )  dy 

+ I m  Gf2sin{a(x-y)2-4+l~}r(y ) dy 

>-  dyr(y) f_aCOS(a(x-y)2-a(x-z)2wlr 
(4.24) 

Now, by condition (ii)' we know that, for any e > 0, no matter how 
small, there exists an Ao (z, t) such that for all A >  Ao, the magnitude of 
the left-hand side of the above relation is < e. Therefore, for all such 
A> Ao(z, t), we have that 

(_.~)1/2f~ ayf_\Acos{o~(X ol(x_z)2+!~o(y))dx ~ r(y) _ y ) 2 _  h - e  

(4.25) 

Now, the above integral over x can be expressed as 

cos ~(Y) f+A COS{O~(X _y)2 _ ce(x - z) 2} dx 
TJ--A 

q~(y) f+a 
sin{~(x-- y)2--a(x-- z) 2} dx - s i n - - ~  - a  

which, in turn, is equal to 

_ 2 1 sin2aA(z-Y) cos{a(y2 z)+~p(y)} 
a(z  - y )  

which, in the limit as A--> m, becomes 

- T r Y ( z - Y )  c ~  a(Y 2-z ) + ~ p ( y )  

This means that, given any ~ > 0, there exists an fi, o(Z, t) such that for all 
A >.,Ao, 

2 r(y) dy _ y ) Z  
. -  

+ T r f  +~ cos{ot(y2_z2)+h}dY rlf+~r(y) dy .t-o~ r(y)a(z -y) < 
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and, therefore, for all A > fi, o, we have 

I.I_+~ r (y )dYf_AaCOS{a(x - -y )2 - -a (x - -z )2+ l~o}  dx 

~(z) 
+rra r(z) cos T < r/c (4.27) 

where c =- S+_~ r( y ) dy >- O. 
Now, equations (4.25) and (4.27) together imply that 

rrr(z)  cos~P(z) < ( ~ )  x/2 
- -  - e + ~)c (4.28) 
a h 

for all A >  max(Ao, e{o) for given arbitrary e > 0 and ~7 >0 .  Thus, we 
conclude that, necessarily, 

, ( z )  < 
c o s - - - ~ -  0 (4.29) 

for all z. 
To this point I have shown that the compatibility of conditions (i) and 

(ii) [or conditions (i)' and (ii)'], without even yet considering condition 
(iii), implies the relation (4.29). But this consequence causes a major 
difficulty, as I now discuss. We know from the structure of the Schr6dinger 
equation that if q, = r e (i/~)~ is a solution for all t, then so is q, = r e ~i/~)~+c~ 
(with the same r and r  a solution for all t, where c is a constant. However, 
adding c to r  will in general make it such that c o s [ i ( z ) / h ]  is not always 
- 0  (where i -= r + c). Thus, we have this situation: suppose that conditions 
(i) and (ii) are compatible for a given ~ =  re  ~/~)~. Then necessarily, 
cos[q~(z)/h <-0 for all z. But adding a constant to ~o(z) does not change r 
(or p) for all t, but now, cos( i f /h)  is not always -<0, so that conditions (i) 
and (ii) are no longer compatible. Thus, for a given p(x, t) (for all x, t) we 
can write 

o(x, t)= f (eo+a)p(z)dz- I Oop(z)dz (4.30) 

where Qo satisfies conditions (i) and (ii) for one choice of q~(z) but not for 
the other, both choices of ~ leading to the same p(x, t), for all t. But this 
cannot be, since we could always define Po+A = -- Qo to be given by that 
value determined by the r with cos (q~/h)<-O. 

Thus, we cannot construct a physical transition probability in the ECK 
equation by the second method discussed previously. 
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I now turn to the first method of identity transformations to see if it 
will produce a physical transition probability. We have already seen that 
this method can only yield one real kernel, Po. The question then is: Does 
P satisfy conditions (i) and (ii)? The answer to this question can be found 
from the discussion just finished concerning the second method of  construct- 
ing kernels. For we have just seen that conditions (i) and (ii) are incompatible 
[regardless of condition (iii)] for any G, that is, then, for any A. In particular, 
the above two conditions are not satisfied for the choice G = 0, i.e., for 
A -= 0. But then, Qo = Po. Thus, Po itself cannot satisfy conditions (i) and (ii). 

Therefore, it has been proven that if p = q,@*, where @ is any wave 
packet initially, and q, is governed by the SchrSdinger equation (under zero 
external field), then p cannot satisfy the ECK equation with a physical 
transition probability. Hence, unobserved position in quantum theory is 
meaningless by the criterion given here. 
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